Abstract

AbstractThe role of solution aggregates on the charge transport process of conjugated polymers in electronic devices has gained increasing attention; however, the correlation of the charge carrier mobilities between the solution aggregates and the solid‐state films remains elusive. Herein, three polymers, FBDOPV‐2T, FBDOPV‐2F2T, and FBDOPV‐4F2T, are designed and synthesized with distinct aggregation behavior in solution. By combining contact‐free ultrafast terahertz (THz) spectroscopy and field‐effect transistor measurements, we track the charge carrier mobility of the aggregates of these polymers from the solution to the thin‐film state. Remarkably, the mobility of these three polymers is found to follow nearly the same trend (FBDOPV‐2T>FBDOPV‐2F2T≫FBDOPV‐4F2T) in both solutions and thin‐film states. The quantitative mobility correlation indicates that the charge transport properties of solution aggregates play a critical role in determining the thin‐film charge transport properties and final device performance. Our results highlight the importance of investigating and controlling solution aggregation structures towards efficient organic electronic devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call