Abstract

Structural defects are detrimental to the efficiency and quality of optoelectronic semiconductor devices. In this work, we study InGaN platelets with a quantum well structure intended for nano-LEDs emitting red light and how their optical properties, measured with cathodoluminescence, relate to the corresponding atomic structure. Through a method of spectroscopy–thinning–imaging, we demonstrate in plan-view how stacking mismatch boundaries intersect the quantum well in a pattern correlated with the observed diminished cathodoluminescence intensity. The results highlight the importance of avoiding stacking mismatch in small LED structures due to the relatively large region of non-radiative recombination caused by the mismatch boundaries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call