Abstract

AbstractAlthough lunar soils contain rock and mineral components from the breakdown of a mixture of rock types, a classification based on the abundances of the major silicate minerals plagioclase, olivine, low‐Ca pyroxene (LCP) and high‐Ca pyroxene can be used to evaluate the major compositional classes that are represented within a given soil. We studied the compositional classes for Apollo 15, 16, and 17 soil samples based on the mineral modal abundances derived by X‐ray diffraction (XRD). Using the XRD results as a ground truth, we determined the compositional classes of the Apollo 15, 16, and 17 sampling stations using mineral maps from the Kaguya Multiband Imager (MI), then mapped areas having compositional classes similar to the sampling stations on regional and global scales. Global distribution of compositional classes was also mapped using MI mineral maps, and the major compositional classes of lunar nonmare surfaces are noritic anorthosite (40%), anorthositic norite (24%), and anorthosite (23%). Our maps show that the lunar highlands and the South Pole‐Aitken (SPA) basin are enriched with noritic materials, indicating the widespread occurrence of LCP‐rich and olivine‐poor assemblages. In contrast to the SPA basin and the highlands, the basin rings of Serenitatis, Crisium, Humorum, Nectaris, Orientale, and Hertzsprung exhibit higher olivine/pyroxene ratios (>2), and we interpret this signature as reflecting a contribution from olivine‐rich upper mantle components.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.