Abstract

Deep learning-based automatic classification of breast tumors using parametric imaging techniques from ultrasound (US) B-mode images is still an exciting research area. The Rician inverse Gaussian (RiIG) distribution is currently emerging as an appropriate example of statistical modeling. This study presents a new approach of correlated-weighted contourlet-transformed RiIG (CWCtr-RiIG) and curvelet-transformed RiIG (CWCrv-RiIG) image-based deep convolutional neural network (CNN) architecture for breast tumor classification from B-mode ultrasound images. A comparative study with other statistical models, such as Nakagami and normal inverse Gaussian (NIG) distributions, is also experienced here. The weighted entitled here is for weighting the contourlet and curvelet sub-band coefficient images by correlation with their corresponding RiIG statistically modeled images. By taking into account three freely accessible datasets (Mendeley, UDIAT, and BUSI), it is demonstrated that the proposed approach can provide more than 98 percent accuracy, sensitivity, specificity, NPV, and PPV values using the CWCtr-RiIG images. On the same datasets, the suggested method offers superior classification performance to several other existing strategies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.