Abstract

Correlated-photon imaging (also called ghost imaging) has attracted much attention in various fields, and its characteristics, such as single-pixel detection, have been extensively explored. In this letter, correlated-photon imaging is presented by using iterative phase retrieval with axially varying distances for optical encryption. A series of phase-only masks are iteratively extracted by modulating the pre-generated random intensity-only maps, and propagation distances are axially varied in a random manner. It is illustrated that the setup parameter can be applied as one of significant keys rather than just complementary one, and the iterative phase retrieval algorithm is applied to flexibly generate phase-only masks for the encoding.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.