Abstract

A detailed study of the photoinduced molecular elimination pathway of formaldehyde on the ground state surface was carried out using high-resolution dc slice ion imaging. Detailed correlated H(2) rovibrational and CO rotational product quantum state distributions were measured by imaging spectroscopically selected CO velocity distributions following photodissociation at energies from approximately 1800 to approximately 4100 cm(-1) above the barrier to molecular elimination. Excitation to the 2(1)4(1), 2(1)4(3), 2(2)4(1), 2(2)4(3), and 2(3)4(1) bands of H(2)CO are reported here. The dependence of the product rovibrational distributions on excitation energy are discussed in light of a dynamical model which has been formulated to describe the strong product state correlations observed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.