Abstract
In an intense laser field, an electron may decay by emitting a pair of photons. The two photons emitted during the process, which can be interpreted as a laser-dressed double Compton scattering, remain entangled in a quantifiable way: namely, the so-called concurrence of the photon polarizations gives a gauge-invariant measure of the correlation of the hard gamma rays. We calculate the differential rate and concurrence for a backscattering setup of the electron and photon beam, employing Volkov states and propagators for the electron lines, thus accounting nonperturbatively for the electron-laser interaction. The nonperturbative results are shown to differ significantly compared to those obtained from the usual double Compton scattering.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.