Abstract

In an intense laser field, an electron may decay by emitting a pair of photons. The two photons emitted during the process, which can be interpreted as a laser-dressed double Compton scattering, remain entangled in a quantifiable way: namely, the so-called concurrence of the photon polarizations gives a gauge-invariant measure of the correlation of the hard gamma rays. We calculate the differential rate and concurrence for a backscattering setup of the electron and photon beam, employing Volkov states and propagators for the electron lines, thus accounting nonperturbatively for the electron-laser interaction. The nonperturbative results are shown to differ significantly compared to those obtained from the usual double Compton scattering.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.