Abstract

Highly controlled electronic correlation in twisted graphene heterostructures has gained enormous research interests recently, encouraging exploration in a wide range of moiré superlattices beyond the celebrated twisted bilayer graphene. Here we characterize correlated states in an alternating twisted Bernal bilayer–monolayer–monolayer graphene of ∼ 1.74°, and find that both van Hove singularities and multiple correlated states are asymmetrically tuned by displacement fields. In particular, when one electron per moiré unit cell is occupied in the electron-side flat band, or the hole-side flat band (i.e., three holes per moiré unit cell), the correlated peaks are found to counterintuitively grow with heating and maximize around 20 K – a signature of Pomeranchuk effect. Our multilayer heterostructure opens more opportunities to engineer complicated systems for investigating correlated phenomena.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.