Abstract
Proton nuclear magnetic resonance (NMR) T1 in a single crystal of copper formiate tetradeuterate is used to study the correlated Cu2+ spin dynamics and to derive the temperature behavior of the in-plane magnetic correlation length. The results are compared with the predictions of recent theoretical models for the spin dynamics in planar quantum Heisenberg antiferromagnets in a wide temperature range (from the Neel temperature up to a reduced temperatureT/J ∼ 1.4, withJ in-plane exchange integral). In particular, it is shown that, in contrast to the predictions of the nonlinear σ model, no crossover to a quantum critical regime occurs and that the experimental findings are well reproduced by deriving the NMR relaxation rate in the framework of the standard mode-mode coupling theory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.