Abstract
Combining force spectroscopy and fluorescence microscopy provides a substantial improvement to the single-molecule toolbox by allowing simultaneous manipulation and orthogonal characterizations of the conformations, interactions, and activity of biomolecular complexes. Here, we describe a combined magnetic tweezers and total internal reflection fluorescence microscopy setup to carry out correlated single-molecule fluorescence spectroscopy and force/twisting experiments. We apply the setup to reveal the DNA interactions of the CRISPR-Cas surveillance complex Cascade. Single-molecule fluorescence of a labeled Cascade allows to follow the DNA association and dissociation of the protein. Simultaneously, the magnetic tweezers probe the DNA unwinding during R-loop formation by the bound Cascade complexes. Furthermore, the setup supports observation of 1D diffusion of protein complexes on stretched DNA molecules. This technique can be applied to study a vast range of protein-DNA interactions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.