Abstract

Correlated random walks (CRW) have been explored in many settings, most notably in the motion of individuals in a swarm or flock. But some subcellular systems such as growth or disassembly of bio-polymers can also be described with similar models and understood using related mathematical methods. Here we consider two examples of growing cytoskeletal elements, actin and microtubules. We use CRW or generalized CRW-like PDEs to model their spatial distributions. In each case, the linear models can be reduced to a Telegrapher's equation. A combination of explicit solutions (in one case) and numerical solutions (in the other) demonstrates that the approach to steady state can be accompanied by (decaying) waves.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.