Abstract

Fission modeling in general-purpose Monte Carlo transport codes often relies on average nuclear data provided by the international evaluation libraries. As such, only average fission multiplicities are available and correlations between fission neutrons and photons are missing. Whereas uncorrelated fission physics is usually sufficient for standard reactor core and radiation shielding calculations, correlated fission secondaries are required for specialized nuclear instrumentation and detector modeling. For coincidence counting detector optimization for instance, the precise simulation of fission neutrons and photons that remain correlated in time from birth to detection is essential. New developments were recently integrated into the Monte Carlo transport code TRIPOLI-4 to model fission physics more precisely, the purpose being to access event-by-event fission events from two different fission models: Fission Reaction Event Yield Algorithm (FREYA) and Fission Fragment Evaporation Leading to an Investigation of Nuclear Data (FIFRELIN). TRIPOLI-4 simulations can now be performed, either by connecting via an application programming interface to the Lawrence Livermore National Laboratory fission library including FREYA, or by reading the external fission event data files produced by FIFRELIN beforehand. These new capabilities enable us to easily compare results from the Monte Carlo transport calculations using the two fission models in a nuclear instrumentation application. In the first part of this paper, the broad underlying principles of the two fission models are recalled. We then present the experimental measurements of neutron angular correlations for 252Cf(sf) and 240Pu(sf). The correlations were measured for several neutron kinetic energy thresholds. In the latter part of this paper, simulation results are compared with the experimental data. Spontaneous fissions in 252Cf and 240Pu are modeled by FREYA or FIFRELIN. Emitted neutrons and photons are subsequently transported to an array of scintillators by TRIPOLI-4 in the analog mode to preserve their correlations. Angular correlations between fission neutrons obtained independently from these TRIPOLI-4 simulations, using either FREYA or FIFRELIN, are compared with the experimental results. For 240Pu(sf), the measured correlations were used to tune one of the FREYA model parameters. Similarly, different sets of parameters have been tested in FIFRELIN to try to improve the agreement with the experimental data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.