Abstract

We develop an efficient algorithm to implement the recently introduced binary tree state (BTS) ansatz on a classical computer. BTS allows a simple approximation to permanents arising from the computationally intractable antisymmetric product of interacting geminals and respects size-consistency. We show how to compute BTS overlap and reduced density matrices efficiently. We also explore two routes for developing correlated BTS approaches: Jastrow coupled cluster on BTS and linear combinations of BT states. The resulting methods show great promise in benchmark applications to the reduced Bardeen-Cooper-Schrieffer Hamiltonian and the one-dimensional XXZ Heisenberg Hamiltonian.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.