Abstract

Development of technologies for protection against chemical warfare agents (CWAs) is critically important. Recently, polyoxometalates have attracted attention as potential catalysts for nerve-agent decomposition. Improvement of their effectiveness in real operating conditions requires an atomic-level understanding of CWA decomposition at the gas-solid interface. We investigated decomposition of the nerve agent Sarin and its simulant, dimethyl chlorophosphate (DMCP), by zirconium polytungstate. Using a multimodal approach, we showed that upon DMCP and Sarin exposure the dimeric tungstate undergoes monomerization, making coordinatively unsaturated Zr(IV) centers available, which activate nucleophilic hydrolysis. Further, DMCP is shown to be a good model system of reduced toxicity for studies of CWA deactivation at the gas-solid interface.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call