Abstract

In this work, an overtone two-dimensional infrared (2D IR) method is shown to allow correlated molecular motions at the frequencies of overtone transitions to be studied. Waiting-time-dependent overtone 2D IR results of the C-O stretching in neat liquid methanol reveal that the autocorrelation of the v = 0 → 2 transition and the cross correlation of the v = 0 → 2/v = 2 → 4 transitions differ considerably (relaxation time being 700 fs and 2 ps, respectively), suggesting different spectral diffusion dynamics. Quantum-chemical computations in combination with ab initio molecular dynamics simulations show that the overtone transition frequency of the C-O stretching mode in liquid methanol is of more structural sensitivity than the fundamental frequency. This work demonstrates a new 2D IR approach to examining the structural sensitivities of the anharmonic potential parameters of higher vibrational states, which can be used to gain new insight into the ultrafast structural dynamics particularly for neat liquids.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call