Abstract

Frailty models are used in the survival analysis to account for the unobserved heterogeneity in individual risks to disease and death. To analyse the bivariate data on related survival times (e.g., matched pairs experiments, twin or family data), the shared frailty models were suggested. Shared frailty models are used despite their limitations. To overcome their disadvantages correlated frailty models may be used. In this paper, we introduce the gamma correlated frailty models based on reversed hazard rate (RHR) with three different baseline distributions namely, the generalised log-logistic type I, the generalised log-logistic type II and the modified inverse Weibull. We introduce the Bayesian estimation procedure using Markov Chain Monte Carlo (MCMC) technique to estimate the parameters involved in these models. We present a simulation study to compare the true values of the parameters with the estimated values. We also apply the proposed models to the Australian twin dataset and a better model is suggested.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.