Abstract

Various properties of the general two-center two-electron integral over the explicitly correlated exponential function are analyzed for the potential use in high precision calculations for diatomic molecules. A compact one dimensional integral representation is found, which is suited for the numerical evaluation. Together with recurrence relations, it makes possible the calculation of the two-center two-electron integral with arbitrary powers of electron distances. Alternative approach via the Taylor series in the internuclear distance is also investigated. Although numerically slower, it can be used in cases when recurrences lose stability. Separate analysis is devoted to molecular integrals with integer powers of interelectronic distances $r_{12}$ and the vanishing corresponding nonlinear parameter. Several methods of their evaluation are proposed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.