Abstract
As discussed in the last three chapters, the fundamental source of noise in a laser is spontaneous emission. A simple pictorial model for the origin of the laser linewidth envisions it as being due to the random phase diffusion process arising from the addition of spontaneously emitted photons with random phases to the laser field. In this chapter we show that the quantum noise leading to the laser linewidth can be suppressed below the standard, i.e., Schawlow–Townes limit by preparing the atomic systems in a coherent superposition of states as in the Hanle effect and quantum beat experiments discussed in Chapter 7. In such coherently prepared atoms the spontaneous emission is said to be correlated. Lasers operating via such a phase coherent atomic ensemble are known as correlated spontaneous emission lasers (CEL). An interesting aspect of the CEL is that it is possible to eliminate the spontaneous emission quantum noise in the relative linewidths by correlating the two spontaneous emission noise events.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.