Abstract

Three topics related to correlated electrons in coupled quantum dots are discussed. The first is quasi-resonance between multi-electron states, which causes hitherto unremarked types of resonant absorption in coupled quantum dots. The second is electron tunneling through a Hubbard gap, which is induced by an increase in the density of electrons in a quantum-dot chain under an overall confining potential. The third is Mott transition in a two-dimensional quantum-dot array induced by an external electric field. In this system, the metal-insulator transition goes through a heavy electron phase in which the density of correlated electrons fluctuates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.