Abstract

We introduce a computational scheme for calculating the electronic structure of random alloys that includes electronic correlations within the framework of the combined density functional and dynamical mean-field theory. By making use of the particularly simple parameterization of the electron Green's function within the linearized muffin-tin orbitals method, we show that it is possible to greatly simplify the embedding of the self-energy. This in turn facilitates the implementation of the coherent potential approximation, which is used to model the substitutional disorder. The computational technique is tested on the Cu-Pd binary alloy system, and for disordered Mn-Ni interchange in the half-metallic NiMnSb.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call