Abstract
We propose to combine the Floquet formalism for systems in ac fields with the dynamical mean-field theory to study correlated electron systems periodically driven out of equilibrium by external fields such as intense laser light. This approach has a virtue that we can nonperturbatively include both the correlation effects and nonlinear effects due to the driving field, which is imperative in analyzing recent experiments for photoinduced phase transitions. In solving the problem, we exploit a general theorem that the Hamiltonian in a Floquet matrix form can be exactly diagonalized for single-band noninteracting systems. As a demonstration, we have applied the method to the Falicov-Kimball model in intense ac fields to calculate the spectral function. The result shows that photoinduced midgap states emerge from strong ac fields, triggering an insulator-metal transition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.