Abstract

We create laterally large and low-disorder GaAs quantum-well-based quantum dots that act as small two-dimensional electron systems. We monitor tunneling of single electrons to the dots by means of capacitance measurements and identify single-electron capacitance peaks in the addition spectrum from occupancies of one up to thousands of electrons. The data show two remarkable phenomena in the Landau level filling factor range ν=2 to ν=5 in selective probing of the edge states of the dot: (i)Coulomb blockade peaks arise from the entrance of two electrons rather than one; (ii)at and near ν=5/2 and at fixed gate voltage, these double-height peaks appear uniformly in a magnetic field with a flux periodicity of h/2e, but they group into pairs at other filling factors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call