Abstract

We study the effect of a random Flory-Huggins parameter in a symmetric diblock copolymer melt which is expected to occur in a copolymer where one block is near its structural glass transition. In the clean limit the microphase segregation between the two blocks causes a weak, fluctuation induced first order transition to a lamellar state. Using a renormalization group approach combined with the replica trick to treat the quenched disorder, we show that beyond a critical disorder strength, which depends on the length of the polymer chain, the character of the transition is changed. The system becomes dominated by strong randomness and a glassy rather than an ordered lamellar state occurs. A renormalization of the effective disorder distribution leads to nonlocal disorder correlations that reflect strong compositional fluctuation on the scale of the radius of gyration of the polymer chains. The reason for this behavior is shown to be the chain length dependent role of critical fluctuations, which are less important for shorter chains and become increasingly more relevant as the polymer length increases and the clean first order transition becomes weaker.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call