Abstract

Decision fusion plays a crucial role in achieving a cohesive and unified outcome by merging diverse perspectives. Within the realm of remote sensing classification, these methodologies become indispensable when synthesizing data from multiple sensors to arrive at conclusive decisions. In our study, we leverage fully Polarimetric Synthetic Aperture Radar (PolSAR) and thermal infrared data to establish distinct decisions for each pixel pertaining to its land cover classification. To enhance the classification process, we employ Pauli's decomposition components and land surface temperature as features. This approach facilitates the extraction of local decisions for each pixel, which are subsequently integrated through majority voting to form a comprehensive global decision for each land cover type. Furthermore, we investigate the correlation between corresponding pixels in the data from each sensor, aiming to achieve pixel-level correlated decision fusion at the fusion center. Our methodology entails a thorough exploration of the employed classifiers, coupled with the mathematical foundations necessary for the fusion of correlated decisions. Quality information is integrated into the decision fusion process, ensuring a comprehensive and robust classification outcome. The novelty of the method is its simplicity in the number of features used as well as the simple way of fusing decisions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call