Abstract

We show that in the interference of two partially correlated scalar light beams, the fields can be divided into parts that are mutually completely correlated (coherent) and parts that are fully uncorrelated with the correlated parts and with each other. Such correlated and uncorrelated parts cannot, in general, be unambiguously specified, but with a certain additional constraint, the partition becomes unique and can be determined. We demonstrate experimentally that the uncorrelated contribution can be physically isolated with the help of a spatial unitary transformation, such as a nonabsorbing beam splitter. Our findings constitute foundational results on optical two-beam interferometry.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.