Abstract

After a brief introduction to the use of the idempotent Dirac first-order density matrix (DM), its time-dependent generalization is considered. Special attention is focused on the equation of motion for the time-dependent DM, which is characterized by the one-body potential V(r, t) of time-dependent density functional theory. It is then shown how the force –∇V(r, t) can be extracted explicitly from this equation of motion. Following a linear-response treatment in which a weak potential V(r, t) is switched on to an initially uniform electron gas, the non-linear example of the two-electron spin-compensated Moshinsky atom is a further focal point. We demonstrate explicitly how the correlated DM for this model can be constructed from the idempotent Dirac DM, in this time-dependent example.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call