Abstract

We have applied a gauge origin invariant method for calculations of nuclear magnetic shielding constants to the singly bonded molecules BF, F2, BH3, CH4, NH3, H2O, and HF as well as to the1H shielding constants of HCN and C2H2. The calculations were performed at the RPA and second order polarization propagator (SOPPA) level of theory. For most molecules the correlation contribution in SOPPA is less diamagnetic than in the comparable MP2 calculations. For F2, SOPPA gives a large paramagnetic correlation correction whereas the MP2 method gives a very small correlation contribution. For all molecules agreement with experimental results is generally improved at the SOPPA level compared to RPA. We have also demonstrated that second order gauge origin invariant, common and local origin (SOLO) methods do not necessarily give the same shielding even in the limit of a converged basis set.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.