Abstract

It is shown that double inflation (two minimally coupled massive scalar fields) can produce correlated adiabatic and isocurvature primordial perturbations. Depending on the two relevant parameters of the model, the contributions to the primordial perturbations are computed, with special emphasis on the correlation, which can be quantitatively represented by a correlation spectrum. Finally the primordial spectra are evolved numerically to obtain the CMBR anisotropy multipole expectation values. It turns out that the existence of mixing and correlation can alter very significantly the temperature fluctuation predictions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.