Abstract
Correctness of boundary value problems in a plane for elliptical equations has been studied properly using the method of the theory of analytic functions. At investigation of analogous problems, when the number of independent variables is more than two, there arise principle difficulties. Quite good and convenient method of singular integral equations has to be abandoned because there is no complete theory of multidimensional singular integral equations. Boundary value problems for second-order elliptical equations in domains with edges have been studied properly earlier. Explicit classical solutions to Dirichlet and Poincare problems in cylindrical domains for one class of multidimensional elliptical equations can be found in the authors works. In this article,the author proved that the local boundary value problem, which is the generalization of Dirichet and Poincare problem, has only solution. Besides, the criterion of uniqueness of regular solution is obtained.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Vestnik of Samara University. Natural Science Series
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.