Abstract
Many tasks, particularly those involving interaction with the environment, are characterized by high variability, making robotic autonomy difficult. One flexible solution is to introduce the input of a human with superior experience and cognitive abilities as part of a shared autonomy policy. However, current methods for shared autonomy are not designed to address the wide range of necessary corrections (e.g., positions, forces, execution rate, etc.) that the user may need to provide to address task variability. In this paper, we present corrective shared autonomy, where users provide corrections to key robot state variables on top of an otherwise autonomous task model. We provide an instantiation of this shared autonomy paradigm and demonstrate its viability and benefits such as low user effort and physical demand via a system-level user study on three tasks involving variability situated in aircraft manufacturing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.