Abstract

The purpose of this work is to study the feasibility of photon beam profile deconvolution using a feedforward neural network (NN) in very small fields (down to 0.56 × 0.56 cm2). The method's independence of the delivery and scanning system is also investigated. Lateral beam profiles of photon fields between 0.56 × 0.56 cm2 and 4.03 × 4.03 cm2 were collected on a Siemens Artiste linear accelerator. Three scanning ionization chambers (SNC 125c, PTW 31021, and PTW 31022) of sensitive volumes ranging from 0.016 cm3 to 0.108 cm3 were used with a PTW MP3 water phantom. A reference dataset was also collected with a PTW 60019 microDiamond detector to train and test individual NNs for each ionization chamber. Further testing of the trained NNs was performed with additional test data collected on an Elekta Synergy linear accelerator using a Sun Nuclear 3D Scanner. The results were evaluated with a 1D gamma analysis (0.5 mm/0.5%). After the deconvolution, the gamma passing rates increased from 54.79% to 99.58% for the SNC 125c, from 57.09% to 99.83% for the PTW 31021, and from 91.03% to 96.36% for the PTW 31022. The delivery system, the scanning system, the scanning mode (continuous vs. step‐by‐step), and the electrometer had no significant influence on the results. This study successfully demonstrated the feasibility of using NN to correct the beam profiles of very small photon fields collected with ionization chambers of various sizes. Its independence of the delivery and scanning system was also shown.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.