Abstract
The cold calibration count from the Advanced Technology Microwave Sounder (ATMS) space view increases when the lunar radiation intrudes its antenna field of view (FOV). This increase is referred to as lunar contamination since the cold count is not matched with the specified brightness temperature of 2.73 K. For ATMS, it is found that the elapse time of lunar intrusion (LI) and the magnitude of the cold count increase are channel dependent. If the lunar-affected calibration counts are rejected in the processing, a data gap can be shown in brightness temperature at all channels. At ATMS channels 1 and 2, which have a large FOV, the LI can result in an increase of 40 counts in cold calibration. At higher frequency channels which have a smaller FOV size, the LI intensity is much stronger and can be as large as a few hundred counts. The LI becomes significant when its radiation appears in the ATMS antenna main beam. In the current ATMS operational calibration algorithm, the cold count anomaly is detected when the intensity of LI exceeds a certain threshold. The lunar radiation can be also corrected in the ATMS calibration. In doing so, a lunar radiation term is derived as a function of antenna gain, the solid angle of the Moon, and the brightness temperature of the Moon disk. This algorithm is applied in an ATMS calibration system developed at NOAA and shows a successful removal of all the lunar contamination on the earth-scene brightness temperature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Geoscience and Remote Sensing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.