Abstract

BackgroundOrganizations that collect substantial data for decision-making purposes are often characterized as being 'data rich' but 'information poor'. Maps and mapping tools can be very useful for research transfer in converting locally collected data into information. Challenges involved in incorporating GIS applications into the decision-making process within the non-profit (public) health sector include a lack of financial resources for software acquisition and training for non-specialists to use such tools. This on-going project has two primary phases. This paper critically reflects on Phase 1: the participatory design (PD) process of developing a collaborative web-based GIS tool.MethodsA case study design is being used whereby the case is defined as the data analyst and manager dyad (a two person team) in selected Ontario Early Year Centres (OEYCs). Multiple cases are used to support the reliability of findings. With nine producer/user pair participants, the goal in Phase 1 was to identify barriers to map production, and through the participatory design process, develop a web-based GIS tool suited for data analysts and their managers. This study has been guided by the Ottawa Model of Research Use (OMRU) conceptual framework.ResultsDue to wide variations in OEYC structures, only some data analysts used mapping software and there was no consistency or standardization in the software being used. Consequently, very little sharing of maps and data occurred among data analysts. Using PD, this project developed a web-based mapping tool (EYEMAP) that was easy to use, protected proprietary data, and permit limited and controlled sharing between participants. By providing data analysts with training on its use, the project also ensured that data analysts would not break cartographic conventions (e.g. using a chloropleth map for count data). Interoperability was built into the web-based solution; that is, EYEMAP can read many different standard mapping file formats (e.g. ESRI, MapInfo, CSV).DiscussionBased on the evaluation of Phase 1, the PD process has served both as a facilitator and a barrier. In terms of successes, the PD process identified two key components that are important to users: increased data/map sharing functionality and interoperability. Some of the challenges affected developers and users; both individually and as a collective. From a development perspective, this project experienced difficulties in obtaining personnel skilled in web application development and GIS. For users, some data sharing barriers are beyond what a technological tool can address (e.g. third party data). Lastly, the PD process occurs in real time; both a strength and a limitation. Programmatic changes at the provincial level and staff turnover at the organizational level made it difficult to maintain buy-in as participants changed over time. The impacts of these successes and challenges will be evaluated more concretely at the end of Phase 2.ConclusionPD approaches, by their very nature, encourage buy-in to the development process, better addresses user-needs, and creates a sense of user-investment and ownership.

Highlights

  • Health services agencies tend to be data-rich, but information-poor [1]

  • The findings revealed that the Ontario Early Year Centres (OEYCs) are an ideal setting to study mapping/maps as innovative research transfer tools because: 1) the barriers identified by data analysts are not insurmountable to overcome with a refined mapping tool and training; and 2) OEYC data analysts and managers are in a setting where mapping/maps are encouraged by the related Ministry

  • The user and task analyses conducted in this phase helped us to refine a collaborative mapping prototype and associated support system to meet the specific needs of data analysts and managers. These analyses provided important information on research transfer issues between producer/user dyads in these OEYCs

Read more

Summary

Introduction

Health services agencies tend to be data-rich, but information-poor [1]. While health services research produces findings that should improve the quality of care, services and policies, consideration of the relevant research is not always evident. Challenges involved in incorporating GIS applications into the decision-making process within the non-profit (public) health sector include a lack of financial resources for software acquisition and training for nonspecialists to use such tools. This on-going project has two primary phases. Research Transfer and GIS Conceptual models of research transfer have evolved to reflect the process of research uptake and utilization, such as diffusion models [22,23] and dissemination models [24] These early models emphasize unidirectional information flow (from scientist to user) rather than interactive information exchange [25]. The interactive information exchange will produce the most relevant data for users, thereby enabling users to engage more fully with the findings [28]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call