Abstract

Massive electrodeposits of nickel and Ni−Co alloys ranging up to 43 pct Co were examined microstructurally and tested to determine tensile properties and static and dynamic fracture toughness. Specimens were also tested after being annealed at 575 K. Annealing increased grain size, decreased yield, and ultimate strengths, and increased ductility and dynamic toughness. The as-plated Ni-43 Co was the only material to exhibit validK IC values, averaging about 38 MN/m3/2. In instrumented dynamic tests on precracked Charpy bars, the same material exhibited aK Id of 50 MN/m3/2. The yield strength of the Ni-43 Co alloy was 1154 MN/m2. All the materials tested showed dimpled, ductile rupture fracture surfaces. The Hall-Petch behavior of the nickel indicated that it is much easier to initiate flow in normal grain boundary structures than in structures composed of dislocation cell walls.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.