Abstract

Organic aerosols will likely form in semisolid, glassy, and high viscous state in the atmosphere, which show nonequilibrium kinetic characteristics at low relative humidity (RH) conditions. In this study, we applied optical tweezers to investigate the water transport in a sucrose/(NH4)2SO4 droplet with high organic to inorganic mole ratio (OIR). The characteristic time ratio between the droplet radius and the RH was used to describe the water mass transfer difference dependent on RH. For OIR greater than 1:1 in sucrose/(NH4)2SO4 droplets, the characteristic time ratio at low RH ( ∼60%). We also coupled vacuum FTIR spectrometer and a high-speed photography to study the efflorescence process in sucrose/(NH4)2SO4 droplets with low OIR. The crystalline fraction of (NH4)2SO4 was used to understand efflorescence behavior when the RH was linearly decreasing with a velocity of 1.2% RH min-1. Because of suppression of (NH4)2SO4 nucleation by addition of sucrose, the efflorescence relative humidity (ERH) of (NH4)2SO4 decrease from the range of ∼48.2% to ∼36.1% for pure (NH4)2SO4 droplets to from ∼44.7% to ∼25.4%, from ∼43.2% to ∼21.2%, and from ∼41.7% to ∼21.1% for the mixed droplets with OIR of 1:4, 1:3, and 1:2, respectively. No crystallization was observed when the OIR is higher than 1:1. Suppression of (NH4)2SO4 crystal growth was also observed under high viscous sucrose/(NH4)2SO4 droplets at lower RH.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.