Abstract
In this research, the processing and characterization of (Y1−xPrx)1+δBa2−δCu3O7−y cuprate perovskite powder were studied. The experimental powder samples of (Y1−xPrx)1+δBa2−δCu3O7−y (0 ≤ x ≤ 1) were prepared using a conventional solid-state reaction method. The starting powders in appropriate ratios were mixed with 6 mol% excess of A-site ions to reduce the amount of BaCuO2 and PrBaO3 second phases and calcined at 880 °C for 12 h in normal atmosphere. The calcined powders were investigated for phase content using X-ray diffraction technique and detailed structural parameters were obtained by Rietveld refinement. The microstructure of the powders was investigated by scanning electron microscopy (SEM). The chemical composition was carried out by energy dispersive X-ray analysis (EDS). The oxidation state and coordination of Pr and Cu were determined by X-ray absorption near edge structure (XANES) spectroscopy. It was found that high-purity (Y,Pr)BCO powders could be obtained. By the Rietveld refinement, the overall unit cell volume increased with increasing Pr content. SEM–EDS images showed that the particle size was about 1–5 μm and the elemental composition of (Y + Pr):Ba:Cu = 1:2:3. Pr and Cu XANES spectra indicated that the average formal valence was larger than 3 for Pr and 2 for Cu. However, the peak shifted to lower valence state at higher concentration of Pr.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.