Abstract
The presence of defect/distortion on layered structure of metal chalcogenides facilitate the higher electronic conductivity and electrocatalytic activity. In this work, we have successfully synthesized Co-doped MoSe2(CoMoSe2, Co2MoSe2, Co3MoSe2, and Co4MoSe2) in 1T phase crystal structure by using hydrothermal technique and integrated with graphene oxide (GO). Various analytical techniques such as TEM, STEM, FESEM, XRD, RAMAN, EDX, ICP, and XPS confirmed the formation of 1T phase and defective sites on Co-doped MoSe2. Consequently, the relevant electrochemical studies were followed and reported the significant enhancement in electrocatalytic activity of MoSe2 due to the Co doping and GO hybridization. The proposed GO@CoMoSe2 electrocatalyst was developed to an electrode material for electrochemical sensor and supercapacitor applications. As expected, the GO@CoMoSe2 modified glassy carbon electrode exhibited an excellent electrocatalytic activity toward the sensing of Metol (LOD, 0.009 μM; sensitivity, 2.397 μA μM-1 cm-2). Meanwhile, GO@CoMoSe2-coated nickel foam (NF) achieved feasible specific capacity (431.47 C g-1). In addition, the GO@CoMoSe2//AC asymmetric device exhibited the feasible energy density of 58.32 W h kg-1 at power density of 1800.25 W kg-1. Thus, we concluded that the Co doping and GO hybridization with MoSe2 provide the interesting idea to find out the excellent electrocatalysts with improved electrochemical performances toward the sensing and battery type supercapacitor applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.