Abstract

Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS) on the Mars Express (MEX) spacecraft has made numerous measurements of the Martian surface and subsurface. However, all of these measurements are distorted by the ionosphere and must be compensated before any analysis. We have developed a technique to compensate for the ionospheric distortions. This technique provides a powerful tool to derive the total electron content (TEC) and other higher-order terms of the limited expansion of the plasma dispersion function that are related to overall shape of the electron column profile. The derived parameters are fitted by using a Chapman model to derive ionospheric parameters like n 0, electron density primary peak (maximum for solar zenith angle (SZA) equal 0), and the neutral height scale H. Our estimated ionospheric parameters are in good agreement with Mars Global Surveyor (MGS) radio-occultation data. However, since MARSIS does not have the observation geometry limitations of the radio occultation measurements, our derived parameters extend over a large range of SZA for each MEX orbit. The first results from our technique have been discussed by Safaeinili et al. [2007, Estimation of the total electron content of the Martian ionosphere using radar sounder surface echoes. Geophys. Res. Lett. 34, L23204, doi:10.1029/2007GL032154].

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call