Abstract

Introduction: Retinoprotective effects of non-selective imidazoline receptor agonists: potassium salt of С7070; sodium salt of С7070; С7070 processed with CO2 – were investigated in comparison with C7070 on the retinal ischemia-reperfusion model in rats.
 Materials and methods: The protective effects of the substances were evaluated by using ophthalmoscopy, laser Doppler flowmetry, electroretinography, histological and morphometric studies of retinal layers.
 Results and discussion: The most pronounced retinoprotective effect was observed in potassium salt of C7070 at a dose of 10 mg/kg, which expresses in approaching the normal eye fundus image, achieving the target values of the retinal blood flow, b/a coefficient, and reaching the norm values of morphometric indicators. A less pronounced protective effect was found in sodium salt of C7070 at a dose of 10 mg/kg, which expresses in a 71% decrease (p < 0.05) in semi-quantitative assessment of the eye fundus changes, an increase in the retinal blood flow level by 70.4% (p < 0.05), in b/a by 94% (p < 0.05) in comparison with the group without correction, and reaching the norm of the morphometric indicators. A retinoprotective effect of the substance C7070 processed with CO2 at a dose of 10 mg/kg is inferior to that of the sodium salt of C7070.
 Conclusion: The retinoprotective activity of the substances is expressed in descending order: potassium salt of С7070 (10 mg/kg) ≈ С7070 (50 mg/kg) > sodium salt of С7070 (10 mg/kg) > С7070 processed with CO2 (10 mg/kg) ≈ С7070 (10 mg/kg). Injections of glibenclamide leveled the neuroretinoprotective effects of the substances to varying degrees, which confirmed the participation of ATP-dependent potassium channels in the implementation of these effects.

Highlights

  • Retinoprotective effects of non-selective imidazoline receptor agonists: potassium salt of С7070; sodium salt of С7070; С7070 processed with CO2 – were investigated in comparison with C7070 on the retinal ischemia-reperfusion model in rats

  • The retinoprotective activity of the substances is expressed in descending order: potassium salt of С7070 (10 mg/kg) ≈ С7070 (50 mg/kg) > sodium salt of С7070 (10 mg/kg) > С7070 processed with CO2 (10 mg/kg) ≈ С7070 (10 mg/kg)

  • Injections of glibenclamide leveled the neuroretinoprotective effects of the substances to varying degrees, which confirmed the participation of ATP-dependent potassium channels in the implementation of these effects

Read more

Summary

Introduction

Retinoprotective effects of non-selective imidazoline receptor agonists: potassium salt of С7070; sodium salt of С7070; С7070 processed with CO2 – were investigated in comparison with C7070 on the retinal ischemia-reperfusion model in rats. Retinal ischemia may have various etiologies: central retinal artery (CRA) occlusion and occlusion of its branches, atherosclerosis of retinal vessels, of carotid arteries, glaucoma with normal intraocular pressure (IOP), endocrine ophthalmopathy, surgical operations, etc. Acute occlusions of retinal arteries in 91.2% of cases occur against the background of cardiovascular system diseases. Nonarteritic anterior ischemic optic neuropathy (NAION), acute ischemia of the anterior segment of the optic nerve, occurs 6 times more often compared with neuropathy developed against the background of systemic vasculitis. At the heart of ischemic neuropathy of the optic nerve is an acute disorder of arterial blood circulation in the system of vessels feeding the optic nerve. In the development of this pathology, a leading role is played by biochemical, haemodynamic and haemostatic disorders that develop in atherosclerosis, hypertension, diabetes mellitus, blood diseases, and arterial (brachiocephalic, etc.) occlusions (Hayreh 2013)

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call