Abstract

In this study, we aim to demonstrate the sensitivity of proton resonance frequency shift (PRFS) -based thermometry to heat-induced magnetic susceptibility changes and to present and evaluate a model-based correction procedure. To demonstrate the expected temperature effect, field disturbances during high intensity focused ultrasound sonications were monitored in breast fat samples with a three-dimensional (3D) gradient echo sequence. To evaluate the correction procedure, the interface of tissue-mimicking ethylene glycol gel and fat was sonicated. During sonication, the temperature was monitored with a 2D dual flip angle multi-echo gradient echo sequence, allowing for PRFS-based relative and referenced temperature measurements in the gel and T1 -based temperature measurements in fat. The PRFS-based measurement in the gel was corrected by minimizing the discrepancy between the observed 2D temperature profile and the profile predicted by a 3D thermal model. The HIFU sonications of breast fat resulted in a magnetic field disturbance which completely disappeared after cooling. For the correction method, the 5th to 95th percentile interval of the PRFS-thermometry error in the gel decreased from 3.8°C before correction to 2.0-2.3°C after correction. This study has shown the effects of magnetic susceptibility changes induced by heating of breast fatty tissue samples. The resultant errors can be reduced by the use of a model-based correction procedure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.