Abstract
Quantitative biases in the abundance of precursor and product ions due to mass discrimination in RF-only ion guides results in inaccurate collision induced dissociation (CID) spectra. We evaluated the effects of collision cell RF voltage and collision energy on CID spectra using ten singly protonated compounds (46-854 Da) in an orthogonal acceleration time-of-flight mass spectrometer. The relative ion transfer efficiency, i.e. the relative amount of ions transferred through the ion guide at any particular RF voltage was shown to be dependent on the ion's m/z. We developed an algorithm to correct for the mass discriminating effects of RF voltage on CID spectra. The algorithm was tested for both precursor and product ions at multiple RF voltages and collision energies in order to ensure reliability. Our results suggest that compounds that generate major product ions with m/z values <150 have peak intensities that deviate substantially from their actual abundance. This has implications for small molecule metabolomics research, particularly for studies that rely on CID spectra matching methods for structure identification.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.