Abstract

Two methods for correction of unknown phase aberrations induced by inhomogeneous acoustic velocities in tissues are explored for the two dimensional geometry of a sectored annular array system. The methods employed are adaptations of a cross correlation technique and a speckle brightness maximization technique. The methods correct phase distortions via the introduction of phase shifts in the timing sequence at the beamformer stage of a sectored annular array transducer. The techniques are investigated employing software models and a computer controlled automated scanning system. A 65-element sectored annular array is modelled via a rotating 5 element transducer. Tissue equivalent materials were moulded into a double layer aberrating medium to simulate phase distortions encountered in the rectus abdominis muscle in vivo. A comparison of the effectiveness of the two correction methods is presented. Contrast of an anechoic region is increased from 0.34 ± 0.08 to 0.48 ± 0.06 for the cross correlation technique, and up to 0.62 ± 0.05 for the speckle brightness maximization method. The performance of these correction techniques on target phantoms suggests that considerable improvements in image quality should be possible for clinical systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.