Abstract

The influence of interference by hemolysis, icterus and lipemia on the results of routine chemistries may lead to wrong interpretations. On Synchron LX-20 instruments (Beckman Coulter) serum or plasma indices can be used as reliable semi-quantitative measures of the magnitude of such interference. In an article recently published in this journal, we presented the results of a multicenter study carried out in Dutch hospitals in which we determined cutoff indices for analytes above which analytically significant interference exists. Clinically significant interference cutoff indices were also derived for these analytes. In this article, we describe the handling of patient samples with clinically significant interference by hemolysis, icterus or lipemia. We investigated several possible approaches for correction of the result: dilution of the interference; mathematical correction in the case of hemolysis; treatment with ferrocyanide to destroy bilirubin; and removal of lipids in lipemic patient samples. We concluded, that mathematical correction of potassium or lactate dehydrogenase results in hemolytic samples can only be carried out if intravascular hemolysis is ruled out. Hemoglobin quantification in serial patient samples, combined with measurement of haptoglobin, represents a useful tool to rule out in vivo hemolysis. We derived an algorithm for this situation. We do not simply recommend mathematical correction, unless it is clinically acceptable. We present formulas for potassium and lactate dehydrogenase: corrected potassium=measured potassium-(hemolytic index increment x 0.14); corrected lactate dehydrogenase=measured lactate dehydrogenase-(hemolytic index increment x 75). The dilution studies indicated that dilution is only applicable for bilirubin, C-reactive protein and iron. The results of treatment with ferrocyanide were poor, and we do not recommend this method. Removal of lipids using high-speed centrifugation or LipoClear (StatSpin Inc.), a non-toxic and non-ionic polymer, is a very effective approach, although C-reactive protein, creatine kinase-MB (CK-MB) and cholesterol cannot be removed using LipoClear. For all interferants (hemoglobin, bilirubin, lipids), relatively simple algorithms are derived that can easily be implemented in the clinical laboratory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.