Abstract

The partial volume effect (PVE) due to the low resolution of SPECT in brain SPECT volumes can be modeled as a convolution of a three-dimensional point-spread function (PSF) with the underlying true radioactivity. In this paper, a deconvolution guided by the edge locations in the geometric transfer matrix (GTM) method as a weighted regularization, denoted as RGTM, was proposed to take into account both the discrepancy from the convolution and the regional-homogeneity prior information in the correction of the PVE (PVC). Two steps were conducted: GTM and then a weighted regularization. Twenty digital phantom simulations were made to compare the performance of RGTM with those of Van-Cittert deconvolution (VC), GTM, and the region-based voxel-wise correction (RBV). Clinical data from eighty-four healthy adults with 99mTc-TRODAT-1 SPECT and MRI scans were also tested. Because the proposed RGTM was good in both constant and non-constant ROIs, its robustness is better than other methods if the distribution of the underlying radioactivity is not known exactly.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.