Abstract

Modern, nonlinear ballistic neutron guides are an attractive concept in neutron beam delivery and instrumentation because they offer increased performance over straight or linearly tapered guides. However, like other ballistic geometries they have the potential to create significantly non-trivial instrumental resolution functions. We address the source of the most prominent optical aberration, namely coma, and we show that for extended sources the off-axis rays have a different focal length from on-axis rays, leading to multiple reflections in the guide system. We illustrate how the interplay between coma, sources of finite size, and mirrors with non-perfect reflectivity can therefore conspire to produce uneven distributions in the neutron beam divergence, a source of complicated resolution functions. To solve these problems, we propose a hybrid elliptic–parabolic guide geometry. Using this new kind of neutron guide shape, it is possible to condition the neutron beam and remove almost all of the aberrations, whilst providing the same performance in beam current as a standard elliptic neutron guide. We highlight the positive implications for neutron scattering instruments that this new shape can bring.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.