Abstract
In this paper, a new appropriate diagonal matrix estimation of the Hessian is introduced by minimizing the Byrd and Nocedal function subject to the weak secant equation. The Hessian estimate is used to correct the framework of a nonmonotone trust region algorithm with the regularized quasi-Newton method. Moreover, to counteract the adverse effect of monotonicity, we introduce a new nonmonotone strategy. The global and superlinear convergence of the suggested algorithm is established under some standard conditions. The numerical experiments on unconstrained optimization test functions show that the new algorithm is efficient and robust.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.