Abstract

We present a method for the correction of motion artifacts present in two- and three-dimensional in vivo endoscopic images produced by rotary-pullback catheters. This method can correct for cardiac/breathing-based motion artifacts and catheter-based motion artifacts such as nonuniform rotational distortion (NURD). This method assumes that en face tissue imaging contains slowly varying structures that are roughly parallel to the pullback axis. The method reduces motion artifacts using a dynamic time warping solution through a cost matrix that measures similarities between adjacent frames in en face images. We optimize and demonstrate the suitability of this method using a real and simulated NURD phantom and in vivo endoscopic pulmonary optical coherence tomography and autofluorescence images. Qualitative and quantitative evaluations of the method show an enhancement of the image quality.

Highlights

  • Optical coherence tomography (OCT) is a three-dimensional (3D) imaging modality providing high-resolution and high-speed volumetric images with depth of penetration in tissue on the order of a millimeter, which has become more common in clinical and biomedical applications due to the ability to resolve diagnostically relevant features.[1]

  • Our group has previously reported a combined endoscopic OCT–autofluorescence imaging (AFI) instrument using a double-clad fiber (DCF) catheter that is capable of detecting pulmonary nodules and vascular networks.[7]

  • We present a new method called azimuthal en face-image registration (AEIR) for motion correction that is applicable to any 3-D or 2-D rotational catheter data with repeating angularly varying values that correlate with physical structures

Read more

Summary

Introduction

Optical coherence tomography (OCT) is a three-dimensional (3D) imaging modality providing high-resolution and high-speed volumetric images with depth of penetration in tissue on the order of a millimeter, which has become more common in clinical and biomedical applications due to the ability to resolve diagnostically relevant features.[1]. In order to access these highly constrained and hard-to-reach areas, OCT systems are often catheter based. Catheter-based systems for in vivo clinical imaging have been developed for cardiology, gastroenterology, and pulmonology.[1,2,3,4,5] in the lung, OCT can visualize distal airway tissue structures at high resolution and when combined with autofluorescence imaging (AFI), can probe specific molecular components of airway tissue such as collagen and elastin.[2,6,7] combined OCT–AFI systems can produce complementary information that may enable increased detection and characterization of structural and functional features associated with different lung diseases. Our group has previously reported a combined endoscopic OCT–AFI instrument using a double-clad fiber (DCF) catheter that is capable of detecting pulmonary nodules and vascular networks.[7]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.