Abstract

AbstractNumerical seasonal forecasts in Earth science always contain forecast errors that cannot be eliminated by improving the ability of the numerical model. Therefore, correction of model forecast results is required. Analog correction is an effective way to reduce model forecast errors, but the key question is how to locate analogs. In this paper, we updated the local dynamical analog (LDA) algorithm to find analogs and depicted the process of model error correction as the LDA correction scheme. The LDA correction scheme was first applied to correct the operational seasonal forecasts of sea surface temperature (SST) over the period 1982–2018 from the state-of-the-art coupled climate model named NCEP Climate Forecast System, version 2. The results demonstrated that the LDA correction scheme improves forecast skill in many regions as measured by the correlation coefficient and root-mean-square error, especially over the extratropical eastern Pacific and tropical Pacific, where the model has high simulation ability. El Niño–Southern Oscillation (ENSO) as the focused physics process is also improved. The seasonal predictability barrier of ENSO is in remission, and the forecast skill of central Pacific ENSO also increases due to the LDA correction method. The intensity of the ENSO mature phases is improved. Meanwhile, the ensemble forecast results are corrected, which proves the positive influence from this LDA correction scheme on the probability forecast of cold and warm events. Overall, the LDA correction scheme, combining statistical and model dynamical information, is demonstrated to be readily integrable with other advanced operational models and has the capability to improve forecast results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.