Abstract

Cryo-electron tomography maps often exhibit considerable noise and anisotropic resolution, due to the low-dose requirements and the missing wedge in Fourier space. These spurious features are visually unappealing and, more importantly, prevent an automated segmentation of geometric shapes, requiring a subjective and labor-intensive manual tracing. We developed a novel computational strategy for objectively denoising and correcting missing-wedge artifacts in homogeneous specimen areas of tomograms, where it is assumed that a template repeats itself across the volume under consideration, as happens in the case of filaments. In our deconvolution approach, we use a template and a map of corresponding template locations, allowing us to compensate for the information lost in the missing wedge. We applied the method to tomograms of actin-filament bundles of inner-ear stereocilia, which are critical for the senses of hearing and balance. In addition, we demonstrate that our method can be used for cell membrane detection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call