Abstract

Abstract Reducing the control error is vital for high-fidelity digital and analog quantum operations. In superconducting circuits, one disagreeable error arises from the reflection of microwave signals due to impedance mismatch in the control chain. Here, we demonstrate a reflection cancelation method when considering that there are two reflection nodes on the control line. We propose to generate the pre-distortion pulse by passing the envelopes of the microwave signal through digital filters, which enables real-time reflection correction when integrated into the field-programmable gate array (FPGA). We achieve a reduction of single-qubit gate infidelity from 0.67% to 0.11% after eliminating microwave reflection. Real-time correction of microwave reflection paves the way for precise control and manipulation of the qubit state and would ultimately enhance the performance of algorithms and simulations executed on quantum processors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.